
2

STYLE – what ?

Programming style is a set of rules or
guidelines used when writing ... code.

https://en.wikipedia.org/wiki/Programming_style

Style concerns everything: files, functions, objects, arguments, names, spacing, indenting,
assignment, quotes, comments, pipes, capitalization, punctuation, and so on...



3

STYLE – why?

… following a particular programming style
will help programmers read and understand
source code conforming to the style, and help
to avoid introducing errors.

https://en.wikipedia.org/wiki/Programming_style



4

STYLE – where?

There is no agreed upon style in the R
environment. But choose one and stick to it.

Tidyverse Styleguide
http://style.tidyverse.org/

rOpenSci Packaging Guide
https://github.com/ropensci/onboarding/blob/master/packaging_guide.md

Google’s Styleguide
https://google.github.io/styleguide/Rguide.xml

http://style.tidyverse.org/
https://github.com/ropensci/onboarding/blob/master/packaging_guide.md
https://google.github.io/styleguide/Rguide.xml


5

DOCUMENTATION – what ?

… documentation is written text ... that accompanies ... or is
embedded in ... code. It either explains how [the code]
operates or how to use it ... https://en.wikipedia.org/wiki/Software_documentation



6

DOCUMENTATION – why?

Code should be easy to understand

That means that it should be written to minimise the time it would take
for someone else to understand it.

The purpose of commenting is to help the reader know as much as you
did when you wrote the code and everything was fresh in your
memory.

That reader could very well be future you. And we all know past you
won’t answer emails.



7

DOCUMENTATION – where?

Tidyverse Styleguide
http://style.tidyverse.org/

rOpenSci Packaging Guide
https://github.com/ropensci/onboarding/blob/master/packaging_guide.md

R packages
http://r-pkgs.had.co.nz/

The Art of Readable Code
https://www.amazon.com/Art-Readable-Code-Practical-Techniques/dp/0596802293

http://style.tidyverse.org/
https://github.com/ropensci/onboarding/blob/master/packaging_guide.md
http://r-pkgs.had.co.nz/
https://www.amazon.com/Art-Readable-Code-Practical-Techniques/dp/0596802293


8

GIT – what ?

Git is a version control system for
tracking changes in computer files and
coordinating work on those files among
multiple people. It is primarily used for
source code management in software
development…

https://en.wikipedia.org/wiki/Git



9

GIT – why?

Data science IS
software
development
…and you need to
use git every time.



10

GIT – where?

Git and GitHub
http://r-pkgs.had.co.nz/git.html

Version Control with Git and SVN
https://support.rstudio.com/hc/en-us/articles/200532077-Version-

Control-with-Git-and-SVN

A successful Git branching model
http://nvie.com/posts/a-successful-git-branching-model/

http://r-pkgs.had.co.nz/git.html
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
http://nvie.com/posts/a-successful-git-branching-model/


11

TEST – what ?

In computer programming, unit testing is a
software testing method by which individual
units of source code, sets of one or more
computer program modules together with
associated control data, usage procedures,
and operating procedures, are tested to
determine whether they are fit for use.

https://en.wikipedia.org/wiki/Unit_testing



12

TEST – why?

Testing makes sure that your code works –
and that it works the way you want it to.

Testing gives you fewer bugs, a better
code structure, easier restarts and more
robust code.

CRAN checks also greatly improve your
package.



13

TEST – where?

Chapter: Testing
http://r-pkgs.had.co.nz/tests.html

testthat package
https://github.com/r-lib/testthat

devtools package
https://www.rstudio.com/products/rpackages/devtools/

http://r-pkgs.had.co.nz/tests.html
https://github.com/r-lib/testthat
https://www.rstudio.com/products/rpackages/devtools/


14

DOCKER – what ?

Docker is a computer program that performs
operating-system-level virtualization also known as
containerization.

Docker uses resource isolation to allow
independent ”containers” to run within a single OS,
avoiding the overhead of starting and maintaining
virtual machines (VMs).



15

DOCKER – why?

Docker can create the exact environment that you
need for your analysis.
Once build you can use this image every time you
need to run the given analysis.
The processes will be totally isolated and software
you run or update will have no effect outside of the
given container.
And you can chain them together in powerful
docker-recipes using docker compose.



16

DOCKER – where?

Rocker
https://github.com/rocker-org/rocker

Docker tutorial
https://docs.docker.com/get-started/

Dockerhub
https://hub.docker.com/explore/

https://github.com/rocker-org/rocker
https://docs.docker.com/get-started/
https://hub.docker.com/explore/

